翻訳と辞書
Words near each other
・ Affine manifold (disambiguation)
・ Affine monoid
・ Affine plane
・ Affine plane (incidence geometry)
・ Affine pricing
・ Affine q-Krawtchouk polynomials
・ Affine representation
・ Affine root system
・ Affine shape adaptation
・ Affine space
・ Affine sphere
・ Affine term structure model
・ Affine transformation
・ Affine variety
・ Affine vector field
Affine-regular polygon
・ Affing
・ Affing House
・ Affinger Bach
・ Affinghausen
・ Affinia
・ Affinia Group
・ Affinia Hotel Collection
・ Affiniam
・ Affinine
・ Affinion Group
・ Affinisine
・ Affinities
・ Affinity
・ Affinity (Affinity album)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Affine-regular polygon : ウィキペディア英語版
Affine-regular polygon
In geometry, an affine-regular polygon or affinely regular polygon is a polygon that is related to a regular polygon by an affine transformation. Affine transformations include translations, uniform and non-uniform scaling, reflections, rotations, shears, and other similarities and some, but not all linear maps.
All triangles are affine-regular. In other words, all triangles can be generated by applying affine transformations to an equilateral triangle. A quadrilateral is affine-regular if and only if it is a parallelogram, which includes rectangles and rhombuses as well as squares. In fact, affine-regular polygons may be considered a natural generalization of parallelograms.〔. See in particular p. 249.〕
Many properties of regular polygons are invariant under affine transformations, and affine-regular polygons share the same properties. For instance,
an affine-regular quadrilateral can be equidissected into m equal-area triangles if and only if m is even, by affine invariance of equidissection and Monsky's theorem on equidissections of squares.〔.〕 More generally an n-gon with n > 4 may be equidissected into m equal-area triangles if and only if m is a multiple of n.〔.〕
==References==



抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Affine-regular polygon」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.